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ABSTRACT

Generative Adversarial Networks (GANs) have emerged as
a powerful tool for generating high-fidelity content. This
paper presents a new training procedure that leverages Neural
Architecture Search (NAS) to discover the optimal archi-
tecture for image generation while employing the Maxi-
mum Mean Discrepancy (MMD) repulsive loss for adver-
sarial training. Moreover, the generator network is com-
pressed using tensor decomposition to reduce its compu-
tational footprint and inference time while preserving its
generative performance. Experimental results show im-
provements of 34% and 28% in the FID score on the
CIFAR-10 and STL-10 datasets, respectively, with corre-
sponding footprint reductions of 14× and 31× compared to
the best FID score method reported in the literature. The code
https://github.com/PrasannaPulakurthi/MMD-AdversarialNAS

Index Terms— Neural Architecture Search, Maximum
Mean Discrepancy, Generative Adversarial Networks

1. INTRODUCTION

Generative Adversarial Networks (GANs) are a branch of
generative models that can generate high-quality samples
from a desired distribution. They have been successfully
applied in the field of computer vision [1] and deep learning
[2] to various tasks such as image-to-image translation [3],
text-to-image synthesis [4], human pose synthesis [5], image
generation [6], and speech synthesis [7].

The GAN generative performance is mainly influenced by
the network architecture and the loss function. This work pro-
poses a new training procedure that combines the advantages
of the MMD-GAN repulsive loss [8] and Adversarial Neu-
ral Architecture Search (AdversarialNAS) [9]. The MMD-
GAN repulsive loss is selected due to its ability to account for
the differences among real images during discriminator train-
ing, which enables the generator to capture intricate details
more effectively. The AdversarialNAS uses a differentiable
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approach to simultaneously search for the optimal generator
and discriminator architectures. The optimal architecture is
trained using the MMD-GAN repulsive loss function along
with our proposed training procedure, resulting in a signifi-
cantly enhanced generative performance compared to the best
reported in the literature. However, it also comes with a larger
footprint. Therefore, tensor decomposition-based techniques
are applied to reduce the footprint of the generator.

Our contributions are two-fold: First, the MMD-GAN
repulsive loss is integrated into the AdversarialNAS frame-
work, and a new training procedure is introduced that
achieves state-of-the-art image generation performance us-
ing GANs. Second, a GAN compression technique based on
tensor decomposition is implemented to reduce the genera-
tor’s footprint while preserving its image generation capabil-
ities through fine-tuning. The proposed method is applied to
unsupervised image generation tasks using standard datasets
such as CIFAR-10 and STL-10. Experimental results on
widely accepted quantitative performance metrics like Incep-
tion Score (IS) [10] and Fréchet Inception Distance (FID)
[11] show that our method substantially outperforms state-of-
the-art techniques (both with uncompressed and compressed
networks). Our tensor decomposition-based method achieves
3.40× compression on the CIFAR-10 and 3.64× compres-
sion on the STL-10 datasets, while significantly outperform-
ing the state-of-the-art GAN techniques for image generation.

2. RELATED WORK

Training Loss Function: Various loss functions have been
proposed in the literature such as minimax loss, non-saturation
loss [12], hinge loss [13], Wasserstein loss [14, 15], and Max-
imum Mean Discrepancy (MMD) [16, 17] loss. Notably, the
MMD-GAN repulsive loss function [8] has gained attention
due to its ability to actively learn the differences among the
real data, thus enabling the generator to learn these differ-
ences and generate a diverse set of high-quality images.

Network Architecture: Neural Architecture Search (NAS)
has been investigated in literature due to its ability to au-
tomatically search for the optimal architecture. Different
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NAS approaches employ various strategies for architecture
optimization. For instance, AutoGAN [18] and AGAN [19]
utilize metrics such as FID or IS as rewards in a reinforcement
learning framework to guide architecture updates. Adversar-
ialNAS [9] introduces a differentiable approach to simulta-
neously search for generator and discriminator architectures.
However, NAS techniques primarily rely on minimax or
hinge loss for searching and training the GAN networks.

GAN Compression: Recently, a growing interest in the com-
pression of GANs has emerged [20, 21, 22, 23, 24, 25], and
various strategies such as knowledge distillation [22, 23],
pruning [20], and the Lottery Ticket Hypothesis (LTH) [24]
have been employed. This is primarily driven by the sub-
stantial memory and computational demands associated with
state-of-the-art GAN models. Tensor decomposition [26], a
technique that has gained significant traction in recent years,
has proven highly effective for compressing neural networks
[27, 28, 29, 30]. This method has been predominantly em-
ployed in the context of Convolutional Neural Networks
(CNNs), and its utility within the domain of GANs designed
for image generation remains largely unexplored.

3. METHOD

This section introduces the training procedure, the loss func-
tion, and the tensor decomposition method. Consider the
given data with N samples represented as X = {xi}Ni=1,
where xi ∈ Rd is the ith sample and X has a distribution
PX . The samples Z from a fixed distribution PZ are input to
the generator (G) to obtain the output samples Y = G(Z),
which follows a distribution PY . The generator is trained to
generate output samples that mimic the real data distribution
PX , that is, the generated distribution PY ≈ PX . The GAN
[12] consists of two networks: the generator network (G)
and the discriminator network (D). The learning is done
by a two-player optimization game in which the generator
aims to generate adversarial samples that fool the discrimina-
tor into thinking they are real, and the discriminator tries to
distinguish between the real and fake samples.

3.1. Training Loss
To train the discriminator, we choose the MMD-GAN repul-
sive loss [8] given by,

min
D

LD = EPX
[kD(x,x′)]− EPY

[kD(y,y′)] (1)

The discriminator loss contracts the discriminator output of
the generated samples D(Y ) by maximizing EPY

[kD(y,y′)]
and expands the discriminator output of the real samples
D(X) by minimizing EPX

[kD(x,x′)]. The generator loss
aims to minimize the Maximum Mean Discrepancy (MMD)
between the generated PY and real distribution PX , given by,

min
G

LG = M2
kD

(PX , PY ) = EPX
[kD(x,x′)]

+ EPY
[kD(y,y′)]− 2EPX ,PY

[kD(x,y)] (2)

where kD(a, b) is a characteristic kernel that measures the
similarity between two samples a and b [31]. To stabilize
MMD-GAN training, the authors in [8] propose the bounded
Gaussian kernel for D(X) and D(Y ) :

kD(a, b) =

{
exp(− 1

2σ2 max(∥a− b∥2, bl)) a, b ∈D(Y )

exp(− 1
2σ2 min(∥a− b∥2, bu)) a, b ∈D(X)

where bl and bu are the lower and upper bounds, and in [8],
the values are set to σ = 1, bl = 0.25, and bu = 4. The au-
thors in [8] defer the fine-tuning of these parameters to future
work. Our extensive simulations, summarized in Table 1, in-
dicate that the GAN generative performance is increased by
progressively increasing the value of bu during training. In
our training procedure outlined in Algorithm 1, we start with
a bu of 4 and increase it if no further improvement in the FID
score is observed within a fixed number of epochs.

Table 1. Ablation study comparing fixed upper bound train-
ing versus our proposed training procedure.

Method bu IS ↑ FID ↓
Fixed 32 9.60±0.14 7.06
Fixed 4 9.80±0.12 6.52

Proposed 4 to 32 9.92±0.07 6.08

Algorithm 1 Proposed training procedure
Input: B batch size, NE number of epoch. Initialize gen-
erator parameters G and discriminator parameters D using
Xavier initialization [32]. Initialize the upper bound bu = 4,
reset = 30, counter = 30, and initial best FID = 1000.
while epoch < NE do

1. Sample a mini-batch {xi}Bi=1 from data distribution
PX and {zi}Bi=1 from noise distribution PZ .
2. Update the generator weights by Adam optimizer using
the gradient: ∇(G)← ∇GLG

3. Update the discriminator weights by Adam optimizer
using the gradient: ∇(D)← ∇DLD

4. Sample 50K images to compute FID and IS metrics.
if FID < best FID then

best FID ← FID
counter ← reset

else
counter ← counter − 1

end
if counter == 0 then

bu ← bu × 2
counter ← reset

end
epoch← epoch+ 1

end

3.2. Network Architecture
The MMD-GAN repulsive loss [8] is incorporated into the
AdversarialNAS [9] framework to search for the optimal ar-
chitecture, which is shown in Figure 1. The deeper layers



Fig. 1. The optimal generator architecture discovered by MMD-NAS for CIFAR-10 dataset.

tend to have denser connections, and the majority of them
have a larger kernel size of 5 × 5, which underscores their
importance for generating fine details in the image. There-
fore, compressing the deeper layers is expected to introduce a
larger performance degradation compared to the initial layers.

3.3. GAN Compression

After training the selected GAN architecture according to
Algorithm 1, a tensor compression technique is applied to
reduce the footprint of the generator while preserving its
generative capabilities. The compression relies on Canonical
Polyadic Decomposition [26] (CPD) and entails approximat-
ing the convolutional layer weights with a low-rank weight.
Although compression inevitably results in information loss
within the network, the network performance can be regained
substantially by fine-tuning the compressed parameters.

Convolution and Fully Connected Layer Compression
via CPD: Each convolutional layer within the generator can
be described as a 4-dimensional tensor W ∈ RT×C×H×W ,
where T and C represent the number of output and input
channels, while H and W are the height and width of the con-
volution kernel. Given a 3D input tensor Y to a convolution
layer, the output tensor Z is calculated by convolving Y with
W . A rank-R CPD is employed to approximate the weight
tensor, with a low-rank tensor in the CP format, given by,
Wt,c,h,w ≈

∑R
r=1 At,rBc,rCh,rDw,r, where A ∈ RT×R,

B ∈ RC×R, C ∈ RH×R and D ∈ RW×R, are the factor ma-
trices obtained by the CPD. Decomposing the weight tensor
according to CPD allows for replacing the convolution layer
with a sequence of four smaller convolution layers, as shown
in Figure 2. The bias is integrated into the final layer within
this sequence. Similarly, the fully connected layer is replaced
with a sequence of two smaller fully connected layers, whose
weights are the factor matrices computed by CPD.

Fig. 2. a) Convolution operation (top). b) Compressed con-
volution operation by CPD (bottom).

Compression of the Generator and Selection Criteria:
To compress the generator network, CPD is applied to spe-
cific layers of the generator. The sensitivity of each layer to
compression, as measured by the FID score, is analyzed inde-
pendently for each generator layer, as shown in Figure 3, and
CPD is applied only to those layers with little performance
loss. Our analysis across all datasets confirms our earlier
conjecture that the compression of deeper layers (9 and 13,
colored orange in Figure 3) results in a larger performance
degradation relative to the remaining layers. These results
may vary for different architectures found using NAS. As a
final step, the fully connected layers are compressed without
any fine-tuning because of stability issues. Also, the first
fully connected layer is left uncompressed as it leads to major
performance degradation.
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Fig. 3. FID of single layer compression without fine-tuning.

4. EXPERIMENTS

Datasets: Our method is evaluated using the CIFAR-10 [37]
(50K images, 32× 32 pixels), and the STL-10 [38] (100K im-
ages, 48 × 48 pixels) datasets. All the images were rescaled
to a range [-1,1]. The images were generated from random
noise sampled from the normal distribution.
Networks: Two networks (large and small) are introduced,
which are created by different numbers of generator channels,
the large network with 256 channels and the small network
with 128 channels. The number of channels for the discrimi-
nator is fixed at 512. These networks are compressed, result-
ing in a total of four networks.
Hyper-Parameters: The Adam [39] optimizer is used for our
model, and the gradient decay factor is set to 0, squared gra-
dient decay factor to 0.9, learning rate to 0.0002, and number
of epochs to 500. The chosen Adam parameters are widely
used in the literature and have shown to be effective in a wide
range of optimization tasks, including image generation.
Evaluation metrics: FID [11] and IS [10] are used for quan-
titative evaluation using 50K real and 50k generated images.



Table 2. The quantitative comparisons of various methods and datasets for image generation tasks against state-of-the-art
approaches, using IS and FID as evaluation metrics.

CIFAR-10 STL10
Method Size (MB) IS ↑ FID ↓ Size (MB) IS ↑ FID ↓

SN-GAN [33] 4.3 8.22±0.05 21.7 - 9.16±0.12 40.1
AGAN [19] 20.1 8.29±0.09 30.5 - 9.23±0.08 52.7

Improved MMD-GAN [8] - 8.29 16.21 - 9.34 37.63
AutoGAN [18] 4.4 8.55±0.10 12.42 5.06 9.16±0.12 31.01

AdversarialNAS [9] 8.84 8.74±0.07 10.87 8.88 9.63±0.19 26.98
Progressive GAN [34] - 8.80±0.05 15.52 - - -

StyleGAN-V2 [35] - 9.18 11.07 - 10.21 20.84
TransGAN [36] 83.06 9.02±0.12 9.26 167.85 10.43±0.16 18.28

Our

Large 20.18 9.62±0.13 5.83 19.47 11.60±0.10 12.91
Compressed Large 5.92 9.66±0.10 6.09 5.35 11.28±0.15 13.06

Small 5.93 9.32±0.15 7.48 5.57 11.39±0.19 14.57
Compressed Small 1.63 9.38±0.10 8.18 1.71 11.66±0.20 14.84

Compression: The rank R, which affects the degree of com-
pression, is maintained across all layers of the network. In
the CIFAR-10 dataset, R is set to 256 and 128 for compress-
ing the large and small networks, respectively. In the STL-10
dataset, R is set to 128. The rank R for the fully connected
layers is set to 4. Tensorly software package [40] is used for
applying CPD to the layer weights.
Fine-tuning: After compression, the generator architecture
is fine-tuned with the MMD-GAN repulsive loss function. To
ensure the stability of the fine-tuning, a low learning rate of
10−5 is used for the new compressed layers. The learning
rate and states of the Adam optimizer are preserved for the
uncompressed generator layers and the discriminator.

5. RESULTS

CIFAR-10 dataset: The quantitative comparisons with pre-
vious state-of-the-art methods are given in Table 2. From the
table it is observed that our method, with the large network
of size 20.1 MB, achieves an FID of 5.83 and an IS of 9.62
± 0.13 (SD), outperforming all the previous methods, includ-
ing large transformer-based generative model [36] which has
4.2× the footprint. Our compressed small network of size
1.63 MB outperforms all previous methods with an FID of
8.18 and an IS of 9.38 ± 0.10 while having the smallest foot-
print. Additionally, the 25 images shown in Figure 4a, which
are randomly generated (without cherry-picking) by the large
network, demonstrate the ability of our method to generate a
diverse set of images with no sign of model collapse.

Transferability to the STL-10 dataset: The same optimal
generator architecture searched using the CIFAR-10 dataset
can be used to generate images from different datasets as is
evidenced by the quantitative results in Table 2. The large
generator network of size 19.47 MB achieves an FID of 12.91

Fig. 4. a) The CIFAR-10 generated images by the discovered
generator (left). b) The STL-10 generated images with the
discovered generator using CIFAR-10 (right).

and an IS of 11.60 ± 0.10. The compressed small network
achieves an FID of 14.84, which is still 18.8% better than the
best result reported in the literature [36], while having a 98×
smaller footprint. The qualitative results of the large genera-
tor network for the STL-10 dataset are shown in Figure 4b.

6. CONCLUSION

In this work, a novel approach has been presented that com-
bines the advantages of MMD-GAN repulsive loss for cap-
turing intricate details, the capabilities of Neural Architecture
Search (NAS) to discover optimal architectures, and the ad-
vantages of tensor decomposition to reduce the network size
while preserving its performance and allowing it to be de-
ployed on edge devices. The proposed method significantly
enhances image generation performance compared to the
state-of-the-art, as measured by quantitative metrics such
as FID and IS, with only a fraction of the footprint. As an
example, on the CIFAR-10 dataset, the proposed technique
achieves a 34% improvement in FID score compared to the
state-of-the-art [36] with a 14× reduction in network size.
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