X-CoT: Explainable Text-to-Video Retrieval via LLM-based Chain-of-Thought Reasoning

Prasanna Reddy Pulakurthi*, Jiamian Wang*, Majid Rabbani*, Sohail Dianat*, Raghuveer Rao*, Zhiqiang Tao*

◆Rochester Institute of Technology ◆DEVCOM Army Research Laboratory

X-COT ESTABABLE CHAN OF HOLDER AND ADMINISTRATION OF HOLDER AND ADMINISTRA

Text Query

LLM CoT

Reasoning

Text

Annotations

for Videos

Explanations

Top-K Videos

Proposed Retrieval

Text Query

Embedding

Model

Cosine Sim

Video Pool

Top-K Videos

Motivation & Background

Motivation:

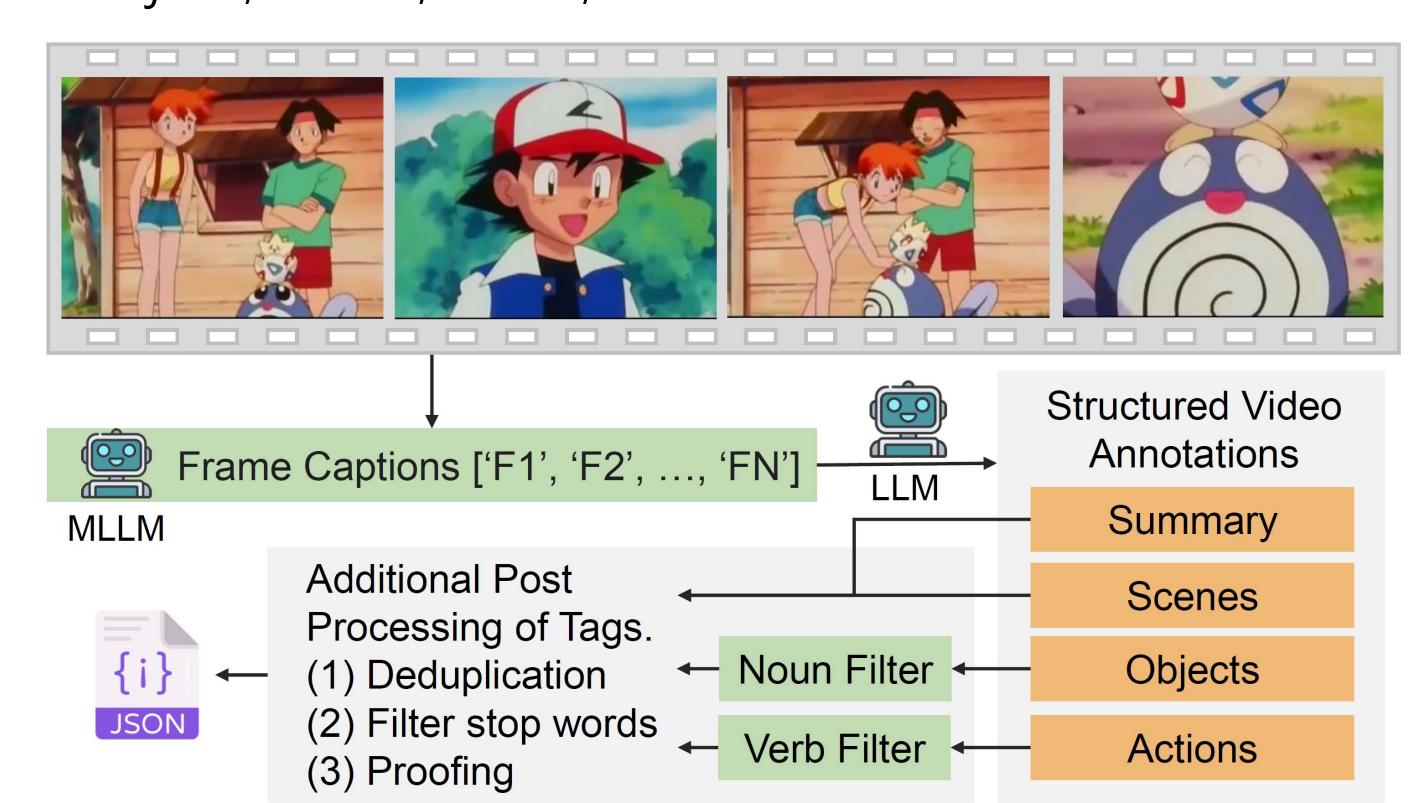
• Existing text-to-video retrieval relies on embedding models and cosine similarity, which lack interpretability and are sensitive to low-quality text-video pairs.

Contributions:

- Introduces X-CoT, an explainable retrieval framework using LLM Chain-of-Thought reasoning, advancing trustworthy and trackable retrieval.
- Expands benchmarks with structured video annotations (objects, actions, scenes, summaries, frame captions) for richer semantics.
- Employs pairwise LLM comparisons with Bradley-Terry aggregation to produce both rankings and natural-language explanations.
- Achieves consistent performance gains across all benchmarks (e.g., +5.6 % R@1 on MSVD) while enabling model and data quality analysis.

Method: Structured Video Annotations Method: X-CoT Framework

- Generates frame-level captions using an MLLM to describe each sampled frame with fine-grained visual details.
- Uses an LLM to produce structured annotations containing objects, actions, scenes, and summaries for richer semantics.



- 1. Use an embedding model (e.g., CLIP, X-Pool) to obtain a top-K video pool ($\mathcal{V} = \{v_1, v_2 \dots v_k\}$) for a text query (q).
- 2. Perform pairwise LLM comparisons between candidate videos using structured annotations.
- 3. Aggregate results via the Bradley-Terry model to obtain a refined ranking and natural-language explanation.

Existing Retrieval

Text Query

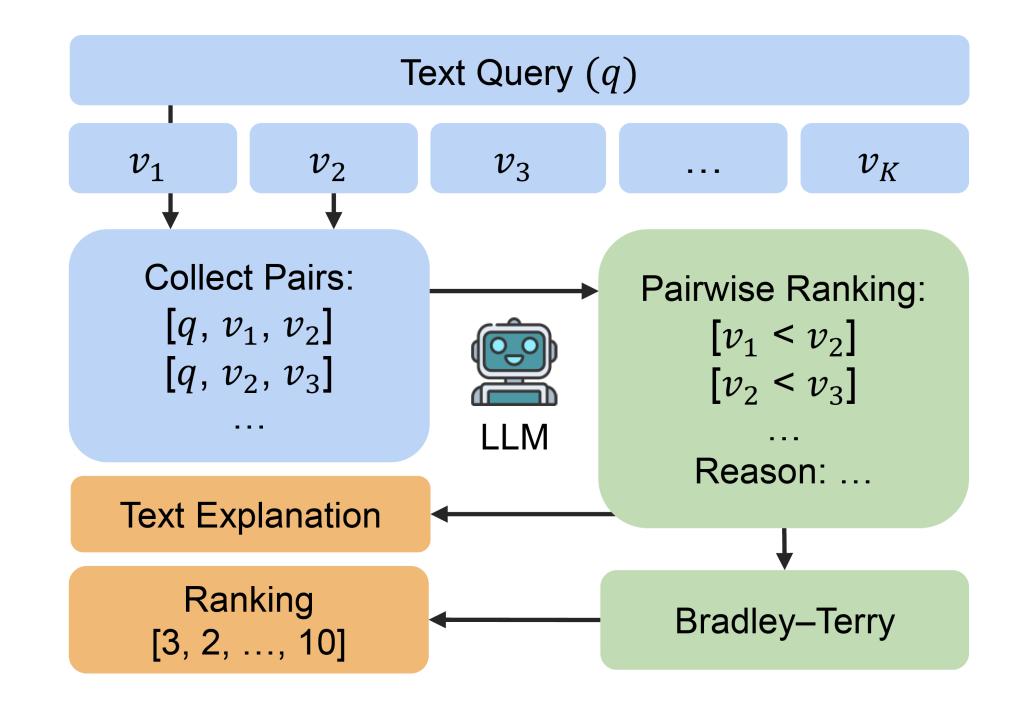
Embedding

Model

Cosine Sim

Video Pool

Top-K Videos



Results & Explainability

- **Retrieval Gains:** +5.6% R@1 gain (CLIP, MSVD) and +1.9 % R@1 (X-Pool, MSVD); consistent improvements across MSR-VTT, MSVD, DiDeMo, and LSMDC.
- Interpretability: Generates natural-language rationales explaining why one video outranks another.

Methods	MSR-VTT					MSVD				
	R @1↑	R@5↑	R@10↑	MdR↓	MnR↓	R@1↑	R@5↑	R@10↑	MdR↓	MnR↓
CLIP (Radford et al., 2021)	31.6	53.8	63.4	4.0	39.0	36.5	64.0	73.9	3.0	20.8
X-CoT (ours)	33.7	56.7	64.6	4.0	38.7	42.1	67.4	75.4	2.0	20.5
VLM2Vec (Jiang et al., 2024)	36.4	60.2	70.7	3.0	27.3	46.7	73.8	82.6	2.0	12.8
X-CoT (ours)	37.2	61.8	71.5	3.0	27.1	48.4	74.8	83.2	2.0	12.6
X-Pool (Gorti et al., 2022)	46.9	73.0	82.0	2.0	14.2	47.2	77.2	86.0	2.0	9.3
X-CoT (ours)	47.3	73.3	82.1	2.0	14.2	49.1	78.0	86.6	2.0	9.2

Table 1: Text-to-video retrieval performance comparison on MSR-VTT and MSVD.

Methods	DiDeMo					LSMDC				
	R@1↑	R@5↑	R@10↑	MdR↓	MnR↓	R@1↑	R@5↑	R@10↑	MdR↓	MnR↓
CLIP (Radford et al., 2021)	25.2	49.4	59.0	6.0	49.7	15.9	28.4	35.3	31.0	129.6
X-CoT (ours)	29.7	52.1	60.6	5.0	49.2	17.6	29.0	36.1	31.0	129.4
VLM2Vec (Jiang et al., 2024)	33.5	57.7	68.4	4.0	34.1	18.2	33.6	41.4	23.0	119.1
X-CoT (ours)	35.8	59.2	68.8	3.0	33.9	18.9	35.1	41.9	23.0	118.9
X-Pool (Gorti et al., 2022)	44.6	72.5	81.0	2.0	15.1	23.6	42.9	52.4	9.0	54.1
X-CoT (ours)	45.1	73.1	81.8	2.0	15.0	23.8	43.8	53.1	8.0	54.0

Table 2: Text-to-video retrieval performance comparison on DiDeMo and LSMDC.

Insight & Diagnosis: Enables identification of noisy captions or ambiguous text-video pairs and reveals the **retrieval model's behaviors** (e.g., semantic focus, missed concepts).

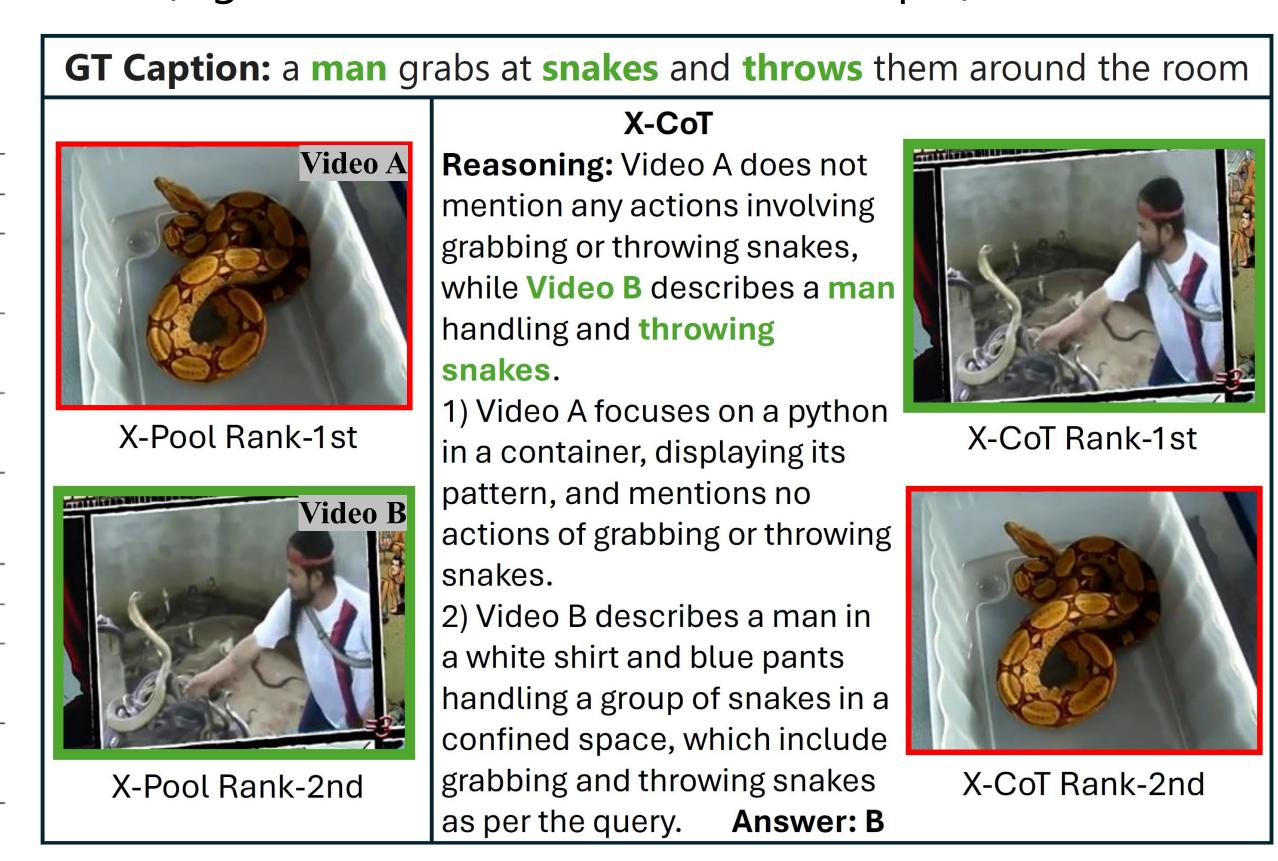


Fig 1. X-CoT provides human-readable explanations for ranking decisions.

Conclusion

X-CoT introduces explainable text-to-video retrieval by integrating Chain-of-Thought LLM reasoning into refined ranking, achieving consistent performance gains and generating natural-language explanations for transparent, trustworthy, and analyzable retrieval systems.

